
Understanding the
 Windows SMB NTLM

Authentication Weak Nonce
Vulnerability

Hernan Ochoa
hernan@ampliasecurity.com

Agustin Azubel
aazubel@ampliasecurity.com

mailto:hernan@ampliasecurity.com
mailto:hernan@ampliasecurity.com
mailto:hernan@ampliasecurity.com
mailto:hernan@ampliasecurity.com

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

Presentation goals:

‣ Describe the vulnerability in detail

‣ Explain & demonstrate exploitation
• Three different exploitation methods

‣ Clear up misconceptions

‣ Determine vulnerability scope, severity and impact

‣ Share Conclusions

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

Vulnerability Information

‣ Flaws in Windows’ implementation of NTLM
- attackers can access SMB service as authorized user
- leads to read/write access to files, SMB shared resources in general
and remote code execution

‣ Published February 2010

‣ CVE-2010-0231, BID 38085

‣ Advisory with Exploit Code:

• http://www.hexale.org/advisories/OCHOA-2010-0209.txt

‣ Addressed by MS10-012

http://www.hexale.org/advisories/OCHOA-2010-0209.txt
http://www.hexale.org/advisories/OCHOA-2010-0209.txt

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

Why talk about this vulnerability?

‣ Major 14-year old vulnerability affecting Windows
Authentication Mechanism!

- Basically, all Windows versions were affected (NT4, 2000, XP, 2003, Vista,
2008, 7)
- Windows NT 4 released in ∼1996
- Windows NT 3.1 released in ∼1993 (∼17 years ago)
- All this time, we assumed it was working correctly.. but it wasn’t...
- Flew under the radar...

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

Why talk about this vulnerability?

‣ Interesting vulnerability, not your common buffer
overflow

- Issues in the Pseudo-Random Number Generator (PRNG)
- Challenge-response protocol implementation issues
- Replay attacks
- Attack to predict challenges is interesting

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

Why talk about this vulnerability?

‣ There’s a lesson to be learned... again...

• Don’t assume anything... auth was broken!

• Crypto is hard

- to design a good algorithm (e.g.: RC*)

- to design a good protocol (e.g.: WEP)

- to implement an algorithm (e.g.: Blowfish signedness issue)

- to implement a protocol (e.g.: OpenSSL EVP_VerifyFinal issue)

- to implement an algorithm or protocol you haven’t designed

- to fully comprehend the implications of an algorithm or protocol

- to use the right protocol in the right context

- Etc., etc., etc., etc...
➡ May want to review it periodically..

• ‘Random’ might not be ‘random’ (PRNG 1= CSPRNG)

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

What is SMB NTLM Authentication?

‣ SMB (Server Message Block)
• Microsoft Windows Protocol used for network file sharing,
printer sharing, etc.
• Provides communications abstractions: named pipes, mail slots
• Remote Procedure Calls (DCE/RPC over SMB)

- Distributed COM (DCOM)

‣ NTLM (NT Lan Manager)
• Microsoft Windows challenge-response authentication protocol

- NTLMv1, NTLMv2, Raw mode, NTLMSSP and more
• Used to authenticate SMB connections
• S...l...o...w...l...y.. being replaced by Kerberos

• But, NTLM still very widely used... all versions..

SMB
NTLM

NTLMv1 NTLMv2

others..

Kerberos

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

What is a challenge-response
authentication protocol?

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

Challenge-response
authentication protocol

• but without revealing the secret

‣A client wants to prove its identity to a server

‣ Both share a secret
• the secret identifies the client

‣Client must prove to the server knowledge of secret

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

Challenge-response
authentication protocol

‣ How?
• Server sends Client a challenge
• Client provides response to Challenge
• Response depends on both the secret and the challenge

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

Challenge-response
authentication protocol

‣ What is the Challenge?
• Typically, number chosen by server randomly and secretly
• Number used no more than once (nonce)

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

Simple challenge-response protocol example

Client Server

Inits authentication

Generates and sends challenge C

Calculates and sends Response R,
where R = f(secret, challenge)

Verifies R,
Allows or disallows access

‣ ‘secret’ is shared by both parties and identifies client

‣ To help prevent prediction attacks, replay attacks and others,
- Challenges have to be nonpredictable
- Challenges have to be unique

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

Challenge-response attack example

Client Server

Inits authentication
1.

Returns a challenge = 2

Sends back Response R, R = 4

Verifies R, allows or disallows access

Attacker Server

2.

Inits authentication

Returns a challenge = X{
...attacker connects to Server repeatedly, until Server returns Challenge = 2 (duplicate!)...

Sends Response R = 4

Attacker authenticates successfully

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

Challenge-response attack example

Attacker • Let X be the Challenge the Server will issue
• Attacker can predict X

1.

Inits authentication

Sends predicted challenge X

Sends back Response R

Attacker Client

acting as server
2.

Inits authentication

Sends challenge X as predicted

Sends back Response R

Attacker authenticates as Client on Server

Attacker
Server

3.

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

NTLM challenge-response
authentication protocol

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

SMB NTLMv1 challenge-response
authentication protocol (simplified)

Client Server

SMB_NEGOTIATE_PROTOCOL_REQUEST
includes supported dialects & flags

SMB_NEGOTIATE_PROTOCOL_RESPONSE
Agrees on dialect to use & flags
includes 8-byte server challenge/nonce (C)

SMB_SESSION_SETUP_ANDX_REQUEST
includes username, domain
24-byte ‘Ansi Password’ (LM), 24-byte ‘Unicode
Password’ (NT)

Ansi Password = f(LM_HASH, challenge)
Unicode Password = f(NT_HASH, challenge)

SMB_SESSION_SETUP_ANDX_RESPONSE
Allows or disallows access

Applies f() with
pwd hashes stored on server

and compares result with client
response

K1, K2, K3 = LM_HASH padded with 5 bytes (all zeroes)
24-byte ‘Ansi Password’ = DES(K1,C) + DES(K2,C) + DES(K3,C)
K1, K2, K3 = NT_HASH padded with 5 bytes (all zeroes)
24-byte ‘Unicode Password’ = DES(K1,C) + DES(K2,C) + DES(K3,C)

f() =

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

SMB NTLMv1 challenge-response
authentication protocol (example)

Client Server

SMB_NEGOTIATE_PROTOCOL_REQUEST
Dialect: NT LM 0.12, Flags2: 0xc001

SMB_NEGOTIATE_PROTOCOL_RESPONSE
Challenge/nonce (aka Encryption Key): 752558B9B5C9DD79
Primary Domain: WORKGROUP
Server: TEST-WINXPPRO

SMB_SESSION_SETUP_ANDX_REQUEST
Account: test, Domain: TEST-WINXPPRO
Ansi Pwd: a1107a4e32e947906e605ec82cc5bc4b289aba170225d022
Unicode Pwd: f35c1f8714f7ef1b82b8d73ef5f73f31be0cd97c66beece2

SMB_SESSION_SETUP_ANDX_RESPONSE
Allows or disallows access Applies f() with

pwd hashes stored on server
and compares result with client

response

‣ A Challenge/nonce has one corresponding Response
- 1 to 1 relationship

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

SMB NTLMv2 challenge-response
authentication protocol (simplified)

Client Server

SMB_NEGOTIATE_PROTOCOL_REQUEST
includes supported dialects & flags

SMB_NEGOTIATE_PROTOCOL_RESPONSE
Agrees on dialect to use & flags
includes 8-byte server challenge/nonce (C)

SMB_SESSION_SETUP_ANDX_REQUEST
includes username, domain
24-byte LMv2 = hmac_md5(ntv2hash*, server_nonce + client_challenge) + 8-byte client_challenge
16-byte NTv2 = hmac_md5(ntv2hash*, server_nonce + blob**)
8-byte TimeStamp
8-byte client_challenge (yes, again..)
*ntv2hash_server = hmac_md5(nt_hash, unicode(upper(user)) + unicode((upper(domain)))
**blob = (TimeStamp+ client_challenge + domain + data)

SMB_SESSION_SETUP_ANDX_RESPONSE
Allows or disallows access

Calculates LMv2 and/or NTv2,
compares result with client

response

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

SMB NTLMv2 challenge-response
authentication protocol (example)

Client Server

SMB_NEGOTIATE_PROTOCOL_REQUEST
Dialect: NT LM 0.12, Flags2: 0xc001

SMB_NEGOTIATE_PROTOCOL_RESPONSE
Challenge/nonce: D87558B432C9DF09

SMB_SESSION_SETUP_ANDX_REQUEST
Account: test, Primary Domain: TEST-WINXPPRO
24-byte LMv2 = a75878e54344db30bd3e4c923777de7b + 77ff82efd6f17dad
16-byte NTv2 = 6f74dc2a3a9719bbd189b8ac36e1f386
Header = 0x00000101
Reserved = 0x00000000
8-byte TimeStamp = 3cea680ede1bcb01
8-byte client_challenge = 77ff82efd6f17dad
unknown = 0x00000000
domain name = TEST-WINXPPRO

SMB_SESSION_SETUP_ANDX_RESPONSE
Allows or disallows access

Calculates LMv2 and/or NTv2,
compares result with client

response

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

SMB NTLM challenge-response authentication

‣ ‘EncryptionKey’ should not be predictable...
‣ ‘EncryptionKey’ should not be repeated...

Client Server

SMB_NEGOTIATE_PROTOCOL_REQUEST
Dialect: NT LM 0.12, Flags2: 0xc001

SMB_NEGOTIATE_PROTOCOL_RESPONSE
Challenge/nonce (‘EncryptionKey’): 752558B9B5C9DD79
Primary Domain: WORKGROUP
Server: TEST-WINXPPRO

1st. attempt

Client Server

SMB_NEGOTIATE_PROTOCOL_REQUEST
Dialect: NT LM 0.12, Flags2: 0xc001

SMB_NEGOTIATE_PROTOCOL_RESPONSE
Challenge/nonce (‘EncryptionKey’): X
Primary Domain: WORKGROUP
Server: TEST-WINXPPRO

n-th attempt

But it was! Frequently!

‣ So.. if we repeatedly connect to Server requesting a challenge

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

n challenge occurrence index
within the collected sample

challenge count

1

all these challenges are unique

Plotting challenges occurrence

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

n challenge occurrence index

challenge count

1

all the remaining challenges are
unique2

i j

challenges at index i and j are the same!

Plotting challenges occurrence

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

no points with 2 as image means
there are no duplicates

Plotting challenges occurrence

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

this is the same challenge and it was
issued two times

Plotting challenges occurrence

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

gap in unique challenge - “flat
line” -,
means the challenge is plotted
above
and was issued multiple times

Plotting challenges occurrence

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

Plotting challenges occurrence

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

Plotting challenges occurrence

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

Plotting challenges occurrence

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

n challenge occurrence index

challenge id

1

all these challenges are unique
2

i j

challenges at index i and j
are equal and their
issue distance is j - i

3

challenges at index k and l
are equal and their
issue distance is l - k

k l

Plotting challenges occurrence

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

Plotting challenges occurrence

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

Plotting challenges occurrence

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

pattern a pattern b

Plotting challenges occurrence

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

pattern c

pattern c

pattern a

pattern a

Plotting challenges occurrence

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

Plotting challenges occurrence

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

Plotting challenges occurrence

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

Exploitation Methods

‣ Passive replay attacks

‣ Active collection of duplicate challenges

‣ Active prediction of challenges

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

Exploitation Methods

‣ Passive replay attacks

‣ Active collection of duplicate challenges

‣ Active prediction of challenges

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

Exploitation Methods - Passive replay attacks

Client Server

•Attacker eavesdrops NTLM traffic
•Gathers challenges and responses

1.

Nonce ‘Ansi Pwd’ ‘Unicode Pwd’ User Domain

F87058B9B5C9AF90 ff1f671e32543790908fbc7d2cfffc4b267acc908a25d
998

f35c1f8714f7ef1b82b8d73ef5f73f31be
0cd97c66beece2 test test-winxppro

752558B9B5C9DD79 a1107a4e32e947906e605ec82cc5bc4b289aba1702
25d022

0000909f1bbbbf1123489a9af5aaf3000
0cd97c55afffc4

test test-winxppro

897DB8F4FDC10000
dddd987980094790909000082cdddc4bcccd43179
87abcdd

aaaa12349cfd14dc988800082cbbbb00
ddfdffd7123abbbb test2 test2-winxppro

...

NTLMv1 example

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

2.

ServerAttacker

SMB_NEGOTIATE_PROTOCOL_REQUEST
Dialect: NT LM 0.12, Flags2: 0xc001

SMB_NEGOTIATE_PROTOCOL_RESPONSE
Challenge/nonce: 752558B9B5C9DD79
Primary Domain: WORKGROUP
Server: TEST-WINXPPRO

Nonce ‘Ansi Pwd’ ‘Unicode Pwd’ User Domain
...

752558B9B5C9D
D79

a1107a4e32e947906e605ec82cc5bc4b28
9aba170225d022

0000909f1bbbbf1123489a9af5a
af30000cd97c55afffc4 test

test-
winxppro

...

• Until server generates duplicate challenge (observed in 1)

?

• Attacker performs authentication attempts repeatedly

Exploitation Methods - Passive replay attacks

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

2.

ServerAttacker

SMB_NEGOTIATE_PROTOCOL_REQUEST
Dialect: NT LM 0.12, Flags2: 0xc001

SMB_NEGOTIATE_PROTOCOL_RESPONSE
Challenge/nonce: 752558B9B5C9DD79
Primary Domain: WORKGROUP
Server: TEST-WINXPPRO

Nonce ‘Ansi Pwd’ ‘Unicode Pwd’ User Domain
...

752558B9B5C9D
D79

a1107a4e32e947906e605ec82cc5bc4b28
9aba170225d022

0000909f1bbbbf1123489a9af5a
af30000cd97c55afffc4

test test-winxppro

...

!

• Gains access to Server

SMB_SESSION_SETUP_ANDX_RESPONSE
allows access

Attacker Server

SMB_SESSION_SETUP_ANDX_REQUEST
Account: test, Domain: TEST-WINXPPRO
Ansi Pwd: a1107a4e32e947906e605ec82cc5bc4b289aba170225d022
Unicode Pwd: f35c1f8714f7ef1b82b8d73ef5f73f31be0cd97c66beece2

• Attacker sends response R (observed in 1)

Exploitation Methods - Passive replay attacks

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

‣ Vulnerable code that generates weak nonces is not
reached when using NTLMSSP/extended security

Client Server

SMB_NEGOTIATE_PROTOCOL_REQUEST
includes supported dialects & flags

SMB_NEGOTIATE_PROTOCOL_RESPONSE
Agrees on dialect to use & flags
Server GUID/Blob
Does NOT include 8-byte server challenge

SMB_SESSION_SETUP_ANDX_REQUEST
NTLMSSP_NEGOTIATE (w/flags)

SMB_SESSION_SETUP_ANDX_RESPONSE
NTLMSSP_CHALLENGE

8-byte NTLM Challenge

SMB_SESSION_SETUP_ANDX_REQUEST
NTLMSSP_AUTH
includes NTLMv1/NTLMv2 response,
username, domain, hostname,etc.

generated by
different code

SMB_SESSION_SETUP_ANDX_RESPONSE
allows or disallows access

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

Flags2 SMB_NEGOTIATE_PROTOCOL_REQUEST
Dialect: NT LM 0.12, Flags2: 0xc001Client Server

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

• Nowadays, Windows to Windows uses flags2 = 0xc853

• Windows NT4 SP1-SP6 uses 0x0003

• Finder OSX 10.3 uses 0x4801 and 0x4001
• Finder OSX 10.6.4 uses 0xC801

• smbclient (current versions) use 0xC801

‣ This is good for the prediction attack...

‣ But, network traffic of each network needs to be analyzed
• Clients and Servers have a saying on which ‘mode’ will be used

• Windows 2000 Professional uses 0xC853

Client Server

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

• Active attack sends SMB_NEGOTIATE_PROTOCOL_REQUEST w/flags2 = 0xc001
• When listening, returns SMB_NEGOTIATE_PROTOCOL_RESPONSE w/flags2 = 0xc001
 and ‘Capabilities’ with extended security disabled

➡ NTLMSSP/extended security not used
• even when Windows sends flags2 = 0xc853

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

SMB NTLMv2 challenge-response
authentication protocol (simplified)

Client Server

SMB_NEGOTIATE_PROTOCOL_REQUEST
includes supported dialects & flags

SMB_NEGOTIATE_PROTOCOL_RESPONSE
Agrees on dialect to use & flags
includes 8-byte server challenge/nonce (C)

SMB_SESSION_SETUP_ANDX_REQUEST
includes username, domain
24-byte LMv2 = hmac_md5(ntv2hash*, server_nonce + client_challenge) + 8-byte client_challenge
16-byte NTv2 = hmac_md5(ntv2hash*, server_nonce + blob**)
8-byte TimeStamp
8-byte client_challenge (yes, again..)
*ntv2hash_server = hmac_md5(nt_hash, unicode(upper(user)) + unicode((upper(domain)))
**blob = (TimeStamp+ client_challenge + domain + data)

SMB_SESSION_SETUP_ANDX_RESPONSE
Allows or disallows access

Calculates LMv2 and/or NTv2,
compares result with client

response

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

SMB NTLMv2 challenge-response
authentication protocol (simplified)

Client Server

SMB_NEGOTIATE_PROTOCOL_REQUEST
includes supported dialects & flags

SMB_NEGOTIATE_PROTOCOL_RESPONSE
Agrees on dialect to use & flags
includes 8-byte server challenge/nonce (C)

SMB_SESSION_SETUP_ANDX_REQUEST
includes username, domain
24-byte LMv2 = hmac_md5(ntv2hash*, server_nonce + client_challenge) + 8-byte client_challenge
16-byte NTv2 = hmac_md5(ntv2hash*, server_nonce + blob**)
8-byte TimeStamp
8-byte client_challenge (yes, again..)
*ntv2hash_server = hmac_md5(nt_hash, unicode(upper(user)) + unicode((upper(domain)))
**blob = (TimeStamp+ client_challenge + domain + data)

SMB_SESSION_SETUP_ANDX_RESPONSE
Allows or disallows access

Calculates LMv2 and/or NTv2,
compares result with client

response

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

‣ Passive replay attacks

‣ Active collection of duplicate challenges

‣ Active prediction of challenges

Exploitation Methods

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

Exploitation - Active collection of duplicate challenges

Attacker User/Wkst1.

• Attacker sends multiple auth attempts and gathers challenges

SMB_NEGOTIATE_PROTOCOL_REQUEST
Dialect: NT LM 0.12, Flags2: 0xc001

SMB_NEGOTIATE_PROTOCOL_RESPONSE
Challenge/nonce: 752558B9B5C9DD79

Nonce
...

752558B9B5C9DD79

F87058B9B5C9AF90

...

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

Exploitation - Active collection of duplicate challenges

• Attacker ‘makes’ user connect to him
• E.g.: email with link to ‘evil’ web site or embedded HTML with
multiple

2.

Attacker User/Wkst

• User connects to attacker’s custom SMB server
SMB_NEGOTIATE_PROTOCOL_REQUEST
Dialect: NT LM 0.12, Flags2: 0xc853

acting as server

• Sends all challenges obtained in 1

Nonce
...

752558B9B5C9DD7
9

F87058B9B5C9AF9
0

...

SMB_NEGOTIATE_PROTOCOL_RESPONSE
Challenge/nonce: 752558B9B5C9DD79

• Sends Response R
SMB_SESSION_SETUP_ANDX_REQUEST

Account: test, Primary Domain: TEST-WINXPPRO
24-byte LMv2 = a75878e54344db30bd3e4c923777de7b + 77ff82efd6f17dad

16-byte NTv2 = 6f74dc2a3a9719bbd189b8ac36e1f386
Header = 0x00000101

Reserved = 0x00000000
8-byte TimeStamp = 3cea680ede1bcb01

8-byte client_challenge = 77ff82efd6f17dad
unknown = 0x00000000

domain name = TEST-WINXPPRO

Nonce Response

...

752558B9B
5C9DD79

...• Attacker makes user/wkst ‘encrypt/hash’ challenges obtained in 1

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

Exploitation - Active collection of duplicate challenges

SMB_NEGOTIATE_PROTOCOL_REQUEST
Dialect: NT LM 0.12, Flags2: 0xc001

SMB_NEGOTIATE_PROTOCOL_RESPONSE
Challenge/nonce: 752558B9B5C9DD79Attacker User/Wkst

3.

Nonce Response

...

752558B9
B5C9DD7
9

[..]

...

• Attacker gains access to user/workstation/server as User

SMB_SESSION_SETUP_ANDX_RESPONSE
allows access

SMB_SESSION_SETUP_ANDX_REQUEST
Account: test, Primary Domain: TEST-WINXPPRO
24-byte LMv2 = a75878e54344db30bd3e4c923777de7b + 77ff82efd6f17dad
16-byte NTv2 = 6f74dc2a3a9719bbd189b8ac36e1f386
Header = 0x00000101
Reserved = 0x00000000
8-byte TimeStamp = 3cea680ede1bcb01
8-byte client_challenge = 77ff82efd6f17dad
unknown = 0x00000000
domain name = TEST-WINXPPRO

• Sends Response (obtained in 2)

?

• Attacker waits until duplicate challenge obtained in 1 appears

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

Exploitation - Active collection of duplicate challenges

‣ Duplicate challenges and responses obtained
can be reused!

- on the same machine!
- on other machines!
- attack once, exploit many times!
- exploit trust relationships!

‣ You only need to repeat step 3 to regain access

Our tests showed that...

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

‣ Passive replay attacks

‣ Active collection of duplicate challenges

‣ Active prediction of challenges

Exploitation Methods

SMB NTLM Challenge generation overview

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

Client

Server

srv.sys!SrvSmbNegotiate
SMB_NEGOTIATE_PROTOCOL_REQUEST

Dialect: NT LM 0.12, Flags2: 0xc001

EncryptionKey =
srv.sys!GetEncryptionKey()

SMB_NEGOTIATE_PROTOCOL_RESPONSE

Encryption Key: 752558B9B5C9DD79

GetEncryptionKey() overview

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

srv.sys ntoskrnl.exe

SMB code
KeQuerySystemTime()

RtlRandom()

GetEncryptionKey()

_EncryptionKeyCount

1.Create seed

2.Use seed

3.Create challenge

4.Return challenge

GetEncryptionKey() pseudocode

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

GLOBAL_DWORD _EncryptionKeyCount = 0

srv.sys!GetEncryptionKey()
{
	

 LARGE_INTEGER CurrentTime
	

 DWORD Seed
	

 DWORD n1, n2, n3

	

 KeQuerySystemTime(&CurrentTime)
	

 CurrentTime.LowPart += _EncryptionKeyCount
	

 _EncryptionKeyCount += 0x100

	

 CT = CurrentTime.LowPart
	

 Seed = CT[1], CT[2]–1, CT[2], CT[1]+1

	

 n1 = ntoskrnl!RtlRandom(&Seed)
	

 n2 = ntoskrnl!RtlRandom(&Seed)
	

 n3 = ntoskrnl!RtlRandom(&Seed)

	

 n1 |= 0x80000000 if (n3 & 1) == 1
	

 n2 |= 0x80000000 if (n3 & 2) == 2

	

 challenge = n1, n2

	

 return challenge
}

GetEncryptionKey() pseudocode

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

GLOBAL_DWORD _EncryptionKeyCount = 0

srv.sys!GetEncryptionKey()
{
	

 LARGE_INTEGER CurrentTime
	

 DWORD Seed
	

 DWORD n1, n2, n3

	

 KeQuerySystemTime(&CurrentTime)
	

 CurrentTime.LowPart += _EncryptionKeyCount
	

 _EncryptionKeyCount += 0x100

	

 CT = CurrentTime.LowPart
	

 Seed = CT[1], CT[2]–1, CT[2], CT[1]+1

	

 n1 = ntoskrnl!RtlRandom(&Seed)
	

 n2 = ntoskrnl!RtlRandom(&Seed)
	

 n3 = ntoskrnl!RtlRandom(&Seed)

	

 n1 |= 0x80000000 if (n3 & 1) == 1
	

 n2 |= 0x80000000 if (n3 & 2) == 2

	

 challenge = n1, n2

	

 return challenge
}

GetEncryptionKey() pseudocode

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

GLOBAL_DWORD _EncryptionKeyCount

srv.sys!GetEncryptionKey()
{
	

 LARGE_INTEGER CurrentTime
	

 DWORD Seed
	

 DWORD n1, n2, n3

	

 KeQuerySystemTime(&CurrentTime)
	

 CurrentTime.LowPart += _EncryptionKeyCount
	

 _EncryptionKeyCount += 0x100

	

 CT = CurrentTime.LowPart
	

 Seed = CT[1], CT[2]–1, CT[2], CT[1]+1

	

 n1 = ntoskrnl!RtlRandom(&Seed)
	

 n2 = ntoskrnl!RtlRandom(&Seed)
	

 n3 = ntoskrnl!RtlRandom(&Seed)

	

 n1 |= 0x80000000 if (n3 & 1) == 1
	

 n2 |= 0x80000000 if (n3 & 2) == 2

	

 challenge = n1, n2

	

 return challenge
}

GetEncryptionKey() pseudocode

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

GLOBAL_DWORD _EncryptionKeyCount

srv.sys!GetEncryptionKey()
{
	

 LARGE_INTEGER CurrentTime
	

 DWORD Seed
	

 DWORD n1, n2, n3

	

 KeQuerySystemTime(&CurrentTime)
	

 CurrentTime.LowPart += _EncryptionKeyCount
	

 _EncryptionKeyCount += 0x100

	

 CT = CurrentTime.LowPart
	

 Seed = CT[1], CT[2]–1, CT[2], CT[1]+1

	

 n1 = ntoskrnl!RtlRandom(&Seed)
	

 n2 = ntoskrnl!RtlRandom(&Seed)
	

 n3 = ntoskrnl!RtlRandom(&Seed)

	

 n1 |= 0x80000000 if (n3 & 1) == 1
	

 n2 |= 0x80000000 if (n3 & 2) == 2

	

 challenge = n1, n2

	

 return challenge
}

GetEncryptionKey() pseudocode

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

GLOBAL_DWORD _EncryptionKeyCount

srv.sys!GetEncryptionKey()
{
	

 LARGE_INTEGER CurrentTime
	

 DWORD Seed
	

 DWORD n1, n2, n3

	

 KeQuerySystemTime(&CurrentTime)
	

 CurrentTime.LowPart += _EncryptionKeyCount
	

 _EncryptionKeyCount += 0x100

	

 CT = CurrentTime.LowPart
	

 Seed = CT[1], CT[2]–1, CT[2], CT[1]+1

	

 n1 = ntoskrnl!RtlRandom(&Seed)
	

 n2 = ntoskrnl!RtlRandom(&Seed)
	

 n3 = ntoskrnl!RtlRandom(&Seed)

	

 n1 |= 0x80000000 if (n3 & 1) == 1
	

 n2 |= 0x80000000 if (n3 & 2) == 2

	

 challenge = n1, n2

	

 return challenge
}

GetEncryptionKey() pseudocode

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

GLOBAL_DWORD _EncryptionKeyCount

srv.sys!GetEncryptionKey()
{
	

 LARGE_INTEGER CurrentTime
	

 DWORD Seed
	

 DWORD n1, n2, n3

	

 KeQuerySystemTime(&CurrentTime)
	

 CurrentTime.LowPart += _EncryptionKeyCount
	

 _EncryptionKeyCount += 0x100

	

 CT = CurrentTime.LowPart
	

 Seed = CT[1], CT[2]–1, CT[2], CT[1]+1

	

 n1 = ntoskrnl!RtlRandom(&Seed)
	

 n2 = ntoskrnl!RtlRandom(&Seed)
	

 n3 = ntoskrnl!RtlRandom(&Seed)

	

 n1 |= 0x80000000 if (n3 & 1) == 1
	

 n2 |= 0x80000000 if (n3 & 2) == 2

	

 challenge = n1, n2

	

 return challenge
}

GetEncryptionKey() pseudocode

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

GLOBAL_DWORD _EncryptionKeyCount

srv.sys!GetEncryptionKey()
{
	

 LARGE_INTEGER CurrentTime
	

 DWORD Seed
	

 DWORD n1, n2, n3

	

 KeQuerySystemTime(&CurrentTime)
	

 CurrentTime.LowPart += _EncryptionKeyCount
	

 _EncryptionKeyCount += 0x100

	

 CT = CurrentTime.LowPart
	

 Seed = CT[1], CT[2]–1, CT[2], CT[1]+1

	

 n1 = ntoskrnl!RtlRandom(&Seed)
	

 n2 = ntoskrnl!RtlRandom(&Seed)
	

 n3 = ntoskrnl!RtlRandom(&Seed)

	

 n1 |= 0x80000000 if (n3 & 1) == 1
	

 n2 |= 0x80000000 if (n3 & 2) == 2

	

 challenge = n1, n2

	

 return challenge
}

GetEncryptionKey() pseudocode

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

GLOBAL_DWORD _EncryptionKeyCount

srv.sys!GetEncryptionKey()
{
	

 LARGE_INTEGER CurrentTime
	

 DWORD Seed
	

 DWORD n1, n2, n3

	

 KeQuerySystemTime(&CurrentTime)
	

 CurrentTime.LowPart += _EncryptionKeyCount
	

 _EncryptionKeyCount += 0x100

	

 CT = CurrentTime.LowPart
	

 Seed = CT[1], CT[2]–1, CT[2], CT[1]+1

	

 n1 = ntoskrnl!RtlRandom(&Seed)
	

 n2 = ntoskrnl!RtlRandom(&Seed)
	

 n3 = ntoskrnl!RtlRandom(&Seed)

	

 n1 |= 0x80000000 if (n3 & 1) == 1
	

 n2 |= 0x80000000 if (n3 & 2) == 2

	

 challenge = n1, n2

	

 return challenge
}

GetEncryptionKey() summary

‣Gets entropy bits from

• KeQuerySystemTime()

• _EncryptionKeyCount

‣Constructs a seed

• seed = CT[1], CT[2]-1, CT[2], CT[1]+1

‣Gets n1, n2, n3 from RtlRandom()

‣Modifies n1 and n2 depending on n3

‣ Returns a challenge concatenating n1 and n2

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

Where do we want to go ?

If we know
★the current internal state of RtlRandom()
★the current system time of the GetEncryptionKey() call
★the current value of _EncryptionKeyCount

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

➡...we can calculate n1, n2, n3...
➡...and predict the next challenges to be issued...

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

RtlRandom overview
[1/5]

ntoskrnl.exe

RtlRandom()
(M-M PRNG system)_RtlpRandomConstantVector

1. Create numbers based
on input seed using
two LCGs

2. Fetch value from
vector

3. Store value into vector
4. Return fetched value

and a context

•srv.sys!
 GetEncryptionKey()

RtlRandom()
Callers

RtlRandom overview: Pseudorandom Number Generators
[2/5]

‣ A pseudorandom number generator (PRNG) generates
sequence of numbers

‣ Desirable properties of a generated sequence of random
numbers

• K1: low probability of identical consecutive elements
• K2: pass certain statistical tests
• K3: should be impossible to recover or predict values from any

given sequence
• K4: should be impossible from an inner state to recover any

previous values or any previous inner states

‣A PRNG may not be cryptographically suited

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

‣ A Linear Congruential Generator (LCG) is a PRNG

‣ Algorithm

‣Xn+1 = (a * Xn + c) mod m

‣ Generates predictable sequences of pseudorandom numbers

➡It is not suitable for cryptographic purposes

‣ Knowing a, c, m and Xn it is straightforward to calculate Xn+1

‣ Given a few Xn it is possible to recover a, c and m

➡Given a few Xn it is possible to reconstruct the sequence

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

RtlRandom overview: Linear Congruential Generators
[3/5]

‣ A MacLaren and Marsaglia system (M-M) is a PRNG

‣ Combines the output of two LCG and a fixed size vector

‣ Algorithm

i. generate X using LCG1

ii.generate Y using LCG2

iii.construct index j from Y

iv.fetch Z from V[j]

v.store X into V[j]

vi.return Z

§Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

RtlRandom overview: MacLaren-Marsaglia Generators
[4/5]

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

RtlRandom overview: MacLaren-Marsaglia Generators
[5/5]

M-M vector V

V0 V1 V2

...

Vn-3 Vn-2 Vn-1

‣Vector V, size n, initialized

‣X = LCG1()

‣Y = LCG2()

‣j = Y & (n - 1)
Vj ‣Z = V[j]
Vj Z

‣V[j] = X

X

‣return Z

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

RtlRandom() pseudocode

DWORD _RtlpRandomConstantVector[128]

DWORD ntoskrnl!RtlRandom(DWORD *Seed)
{
	

 DWORD a = 0x7FFFFFED; // LCG{1,2} multiplier
	

 DWORD c = 0x7FFFFFC3; // LCG{1,2} increment
	

 DWORD m = 0x7FFFFFFF; // LCG{1,2} modulus

	

 DWORD X; // LCG1 output
	

 DWORD Y; // LCG2 output
	

 DWORD Z; // RtlRandom output

	

 X = (a * (*Seed) + c) mod m // M-M LCG1
	

 Y = (a * X + c) mod m // M-M LCG2

	

 *Seed = Y // returned as context
	

 j = Y & 0x7F	

 // index derived from LCG2

	

	

 Z = _RtlpRandomConstantVector[j] // FETCH
	

 _RtlpRandomConstantVector[j] = X // STORE

	

 return Z
}

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

RtlRandom() pseudocode

DWORD _RtlpRandomConstantVector[128]

DWORD ntoskrnl!RtlRandom(DWORD *Seed)
{
	

 DWORD a = 0x7FFFFFED; // LCG{1,2} multiplier
	

 DWORD c = 0x7FFFFFC3; // LCG{1,2} increment
	

 DWORD m = 0x7FFFFFFF; // LCG{1,2} modulus

	

 DWORD X; // LCG1 output
	

 DWORD Y; // LCG2 output
	

 DWORD Z; // RtlRandom output

	

 X = (a * (*Seed) + c) mod m // M-M LCG1
	

 Y = (a * X + c) mod m // M-M LCG2

	

 *Seed = Y // returned as context
	

 j = Y & 0x7F	

 // index derived from LCG2

	

	

 Z = _RtlpRandomConstantVector[j] // FETCH
	

 _RtlpRandomConstantVector[j] = X // STORE

	

 return Z
}

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

RtlRandom() pseudocode

DWORD _RtlpRandomConstantVector[128]

DWORD ntoskrnl!RtlRandom(DWORD *Seed)
{
	

 DWORD a = 0x7FFFFFED; // LCG{1,2} multiplier
	

 DWORD c = 0x7FFFFFC3; // LCG{1,2} increment
	

 DWORD m = 0x7FFFFFFF; // LCG{1,2} modulus

	

 DWORD X; // LCG1 output
	

 DWORD Y; // LCG2 output
	

 DWORD Z; // RtlRandom output

	

 X = (a * (*Seed) + c) mod m // M-M LCG1
	

 Y = (a * X + c) mod m // M-M LCG2

	

 *Seed = Y // returned as context
	

 j = Y & 0x7F	

 // index derived from LCG2

	

	

 Z = _RtlpRandomConstantVector[j] // FETCH
	

 _RtlpRandomConstantVector[j] = X // STORE

	

 return Z
}

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

RtlRandom() pseudocode

DWORD _RtlpRandomConstantVector[128]

DWORD ntoskrnl!RtlRandom(DWORD *Seed)
{
	

 DWORD a = 0x7FFFFFED; // LCG{1,2} multiplier
	

 DWORD c = 0x7FFFFFC3; // LCG{1,2} increment
	

 DWORD m = 0x7FFFFFFF; // LCG{1,2} modulus

	

 DWORD X; // LCG1 output
	

 DWORD Y; // LCG2 output
	

 DWORD Z; // RtlRandom output

	

 X = (a * (*Seed) + c) mod m // M-M LCG1
	

 Y = (a * X + c) mod m // M-M LCG2

	

 *Seed = Y // returned as context
	

 j = Y & 0x7F	

 // index derived from LCG2

	

	

 Z = _RtlpRandomConstantVector[j] // FETCH
	

 _RtlpRandomConstantVector[j] = X // STORE

	

 return Z
}

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

RtlRandom() pseudocode

DWORD _RtlpRandomConstantVector[128]

DWORD ntoskrnl!RtlRandom(DWORD *Seed)
{
	

 DWORD a = 0x7FFFFFED; // LCG{1,2} multiplier
	

 DWORD c = 0x7FFFFFC3; // LCG{1,2} increment
	

 DWORD m = 0x7FFFFFFF; // LCG{1,2} modulus

	

 DWORD X; // LCG1 output
	

 DWORD Y; // LCG2 output
	

 DWORD Z; // RtlRandom output

	

 X = (a * (*Seed) + c) mod m // M-M LCG1
	

 Y = (a * X + c) mod m // M-M LCG2

	

 *Seed = Y // returned as context
	

 j = Y & 0x7F	

 // index derived from LCG2

	

	

 Z = _RtlpRandomConstantVector[j] // FETCH
	

 _RtlpRandomConstantVector[j] = X // STORE

	

 return Z
}

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

RtlRandom() pseudocode

DWORD _RtlpRandomConstantVector[128]

DWORD ntoskrnl!RtlRandom(DWORD *Seed)
{
	

 DWORD a = 0x7FFFFFED; // LCG{1,2} multiplier
	

 DWORD c = 0x7FFFFFC3; // LCG{1,2} increment
	

 DWORD m = 0x7FFFFFFF; // LCG{1,2} modulus

	

 DWORD X; // LCG1 output
	

 DWORD Y; // LCG2 output
	

 DWORD Z; // RtlRandom output

	

 X = (a * (*Seed) + c) mod m // M-M LCG1
	

 Y = (a * X + c) mod m // M-M LCG2

	

 *Seed = Y // returned as context
	

 j = Y & 0x7F	

 // index derived from LCG2

	

	

 Z = _RtlpRandomConstantVector[j] // FETCH
	

 _RtlpRandomConstantVector[j] = X // STORE

	

 return Z
}

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

RtlRandom() pseudocode

DWORD _RtlpRandomConstantVector[128]

DWORD ntoskrnl!RtlRandom(DWORD *Seed)
{
	

 DWORD a = 0x7FFFFFED; // LCG{1,2} multiplier
	

 DWORD c = 0x7FFFFFC3; // LCG{1,2} increment
	

 DWORD m = 0x7FFFFFFF; // LCG{1,2} modulus

	

 DWORD X; // LCG1 output
	

 DWORD Y; // LCG2 output
	

 DWORD Z; // RtlRandom output

	

 X = (a * (*Seed) + c) mod m // M-M LCG1
	

 Y = (a * X + c) mod m // M-M LCG2

	

 *Seed = Y // returned as context
	

 j = Y & 0x7F	

 // index derived from LCG2

	

	

 Z = _RtlpRandomConstantVector[j] // FETCH

	

 _RtlpRandomConstantVector[j] = X // STORE

	

 return Z
}

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

RtlRandom() pseudocode

DWORD _RtlpRandomConstantVector[128]

DWORD ntoskrnl!RtlRandom(DWORD *Seed)
{
	

 DWORD a = 0x7FFFFFED; // LCG{1,2} multiplier
	

 DWORD c = 0x7FFFFFC3; // LCG{1,2} increment
	

 DWORD m = 0x7FFFFFFF; // LCG{1,2} modulus

	

 DWORD X; // LCG1 output
	

 DWORD Y; // LCG2 output
	

 DWORD Z; // RtlRandom output

	

 X = (a * (*Seed) + c) mod m // M-M LCG1
	

 Y = (a * X + c) mod m // M-M LCG2

	

 *Seed = Y // returned as context
	

 j = Y & 0x7F	

 // index derived created LCG2

	

	

 Z = RtlpRandomConstantVector[j] // FETCH

	

 _RtlpRandomConstantVector[j] = X // STORE

	

 return Z
}

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

RtlRandom() pseudocode

DWORD _RtlpRandomConstantVector[128]

DWORD ntoskrnl!RtlRandom(DWORD *Seed)
{
	

 DWORD a = 0x7FFFFFED; // LCG{1,2} multiplier
	

 DWORD c = 0x7FFFFFC3; // LCG{1,2} increment
	

 DWORD m = 0x7FFFFFFF; // LCG{1,2} modulus

	

 DWORD X; // LCG1 output
	

 DWORD Y; // LCG2 output
	

 DWORD Z; // RtlRandom output

	

 X = (a * (*Seed) + c) mod m // M-M LCG1
	

 Y = (a * X + c) mod m // M-M LCG2

	

 *Seed = Y // returned as context
	

 j = Y & 0x7F	

 // index derived from LCG2

	

	

 Z = _RtlpRandomConstantVector[j] // FETCH
	

 _RtlpRandomConstantVector[j] = X // STORE

	

 return Z;
}

‣ It is an M-M system

➡Two operations can be defined

✓FETCH: dependent on values
of the table AND the seed/
context

✓STORE, dependent on values
of the seed/context BUT
independent of the values of the
table

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

RtlRandom() summary

_RtlpRandomConstantVector

_RtlpRandomConstantVector

Knowing the PRNG internal state depends on

1. _EncryptionKeyCount value

2. Calls to RtlRandom()

3. Return value of KeQuerySystemTime()

... we performed a macro analysis of the SMB protocol and the related
components...

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

Challenge generation macro analysis overview

_EncryptionKeyCount value

‣ Always initialized to zero at system boot time

‣ Only updated by GetEncryptionKey, which is not usually called

➡_EncryptiontKeyCount is predictable depending on the
environment (_EncryptionKeyCount = 0)

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

Challenge generation macro analysis
[1/3]

Calls to RtlRandom()
‣ They are performed every time a process is spawned

‣ not an issue
‣ large number of process spawns during attack not likely
‣ try another predicted challenge
‣ launch the attack again

➡The consequences of RtlRandom() calls can be
circumvented

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

Challenge generation macro analysis
[2/3]

KeQuerySystemTime() return value
‣ It is incremented by 100-nanoseconds

‣ Could be the same among consecutive packets

‣ Only the middle 16-bits of CurrentTime.LowPart are used

‣ The current system time of the Server is leaked during SMB
NTLM negotiation

➡ KeQuerySystemTime() return value is known by
the attacker

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

Challenge generation macro analysis
[3/3]

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

Client

Server

srv.sys!SrvSmbNegotiate
SMB_NEGOTIATE_PROTOCOL_REQUEST

Dialect: NT LM 0.12, Flags2: 0xc001

EncryptionKey
srv.sys!GetEncryptionKey()

SMB_NEGOTIATE_PROTOCOL_RESPONSE

Encryption Key: 752558B9B5C9DD79

Server Time: 009b19691c17cb01 KeQuerySystemTime()

KeQuerySystemTime()

.

..

Multiple calls to KeQuerySystemTime()

The attack: Loading dices

i.Set RtlRandom internal state to a known state
ii.Calculate possible challenges
iii.Collect possible responses
iv.Connect and use a valid response

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

Challenge prediction attack
[1/4]

a.Send a packet that triggers RtlRandom
b.Receive response and save received timestamp
c.Simulate the M-M store behaviour
d.loop to a. until the simulated M-M vector is complete

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

Step 1 - Set RtlRandom internal state to a known state

Attacker Victim

0 0 0

0 0 0

0 0 0

Attacker simulated M-M vector Victim RtlRandom M-M vector

? ? ?

? ? ?

? ? ?

Challenge prediction attack
[1/4]

a.Send a packet that triggers RtlRandom
b.Receive response and save received timestamp
c.Simulate the M-M store behaviour
d.loop to a until the simulated M-M vector is complete

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

Step 1 - Set RtlRandom internal state to a known state

Attacker Victim
Requests authentication

0 0 0

0 0 0

0 0 0

Attacker simulated M-M vector Victim RtlRandom M-M vector

? ? ?

? ? ?

? ? ?

a.Send a packet that triggers RtlRandom
b.Receive response and save received timestamp
c.Simulate the M-M store behaviour
d.loop to a. until the simulated M-M vector is complete

Challenge prediction attack
[1/4]

a.Send a packet that triggers RtlRandom
b.Receive response and save received timestamp
c.Simulate the M-M store behaviour
d.loop to a until the simulated M-M vector is complete

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

Step 1 - Set RtlRandom internal state to a known state

Attacker Victim
Requests authentication

0 0 0

0 0 0

0 0 0

Attacker simulated M-M vector Victim RtlRandom M-M vector

? ? ?

? ? ?

? ? ?

? v1 ?

? ? ?

v6 ? v8

a.Send a packet that triggers RtlRandom
b.Receive response and save received timestamp
c.Simulate the M-M store behaviour
d.loop to a until the simulated M-M vector is complete

a.Send a packet that triggers RtlRandom
b.Receive response and save received timestamp
c.Simulate the M-M store behaviour
d.loop to a. until the simulated M-M vector is complete

Returns a challenge + timestamp

Challenge prediction attack
[1/4]

a.Send a packet that triggers RtlRandom
b.Receive response and save received timestamp
c.Simulate the M-M store behaviour
d.loop to a until the simulated M-M vector is complete

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

Step 1 - Set RtlRandom internal state to a known state

Attacker Victim
Requests authentication

Returns a challenge + timestamp

0 0 0

0 0 0

0 0 0

Attacker simulated M-M vector Victim RtlRandom M-M vector

? ? ?

? ? ?

? ? ?

? v1 ?

? ? ?

v6 ? v8

0 v1 0

0 0 0

v6 0 v8

a.Send a packet that triggers RtlRandom
b.Receive response and save received timestamp
c.Simulate the M-M store behaviour
d.loop to a until the simulated M-M vector is complete

a.Send a packet that triggers RtlRandom
b.Receive response and save received timestamp
c.Simulate the M-M store behaviour
d.loop to a until the simulated M-M vector is complete

a.Send a packet that triggers RtlRandom
b.Receive response and save received timestamp
c.Simulate the M-M store behaviour
d.loop to a until the simulated M-M vector is complete

Challenge prediction attack
[1/4]

a.Send a packet that triggers RtlRandom
b.Receive response and save received timestamp
c.Simulate the M-M store behaviour
d.loop to a until the simulated M-M vector is complete

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

Step 1 - Set RtlRandom internal state to a known state

Attacker Victim
Requests authentication

Returns a challenge + timestamp

0 0 0

0 0 0

0 0 0

Attacker simulated M-M vector Victim RtlRandom M-M vector

? ? ?

? ? ?

? ? ?

? v1 ?

? ? ?

v6 ? v8

0 v1 0

0 0 0

v6 0 v8

a.Send a packet that triggers RtlRandom
b.Receive response and save received timestamp
c.Simulate the M-M store behaviour
d.loop to a until the simulated M-M vector is complete

a.Send a packet that triggers RtlRandom
b.Receive response and save received timestamp
c.Simulate the M-M store behaviour
d.loop to a until the simulated M-M vector is complete

a.Send a packet that triggers RtlRandom
b.Receive response and save received timestamp
c.Simulate the M-M store behaviour
d.loop to a until the simulated M-M vector is complete

a.Send a packet that triggers RtlRandom
b.Receive response and save received timestamp
c.Simulate the M-M store behaviour
d.loop to a. until the simulated M-M vector is complete

Challenge prediction attack
[1/4]

a.Send a packet that triggers RtlRandom
b.Receive response and save received timestamp
c.Simulate the M-M store behaviour
d.loop to a until the simulated M-M vector is complete

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

Step 1 - Set RtlRandom internal state to a known state

Attacker Victim
Requests authentication

Returns a challenge + timestamp

0 0 0

0 0 0

0 0 0

Attacker simulated M-M vector Victim RtlRandom M-M vector

? ? ?

? ? ?

? ? ?

? v1 ?

? ? ?

v6 ? v8

0 v1 0

0 0 0

v6 0 v8

a.Send a packet that triggers RtlRandom
b.Receive response and save received timestamp
c.Simulate the M-M store behaviour
d.loop to a until the simulated M-M vector is complete

a.Send a packet that triggers RtlRandom
b.Receive response and save received timestamp
c.Simulate the M-M store behaviour
d.loop to a until the simulated M-M vector is complete

a.Send a packet that triggers RtlRandom
b.Receive response and save received timestamp
c.Simulate the M-M store behaviour
d.loop to a until the simulated M-M vector is complete

a.Send a packet that triggers RtlRandom
b.Receive response and save received timestamp
c.Simulate the M-M store behaviour
d.loop to a. until the simulated M-M vector is complete

Challenge prediction attack
[1/4]

a.Send a packet that triggers RtlRandom
b.Receive response and save received timestamp
c.Simulate the M-M store behaviour
d.loop to a until the simulated M-M vector is complete

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

Step 1 - Set RtlRandom internal state to a known state

Attacker Victim
Requests authentication

Returns a challenge + timestamp

0 0 0

0 0 0

0 0 0

Attacker simulated M-M vector Victim RtlRandom M-M vector

? ? ?

? ? ?

? ? ?

? v1 ?

? ? ?

v6 ? v8

0 v1 0

0 0 0

v6 0 v8

? v1 v2

v3 ? v5

v6 ? v8

a.Send a packet that triggers RtlRandom
b.Receive response and save received timestamp
c.Simulate the M-M store behaviour
d.loop to a until the simulated M-M vector is complete

a.Send a packet that triggers RtlRandom
b.Receive response and save received timestamp
c.Simulate the M-M store behaviour
d.loop to a until the simulated M-M vector is complete

a.Send a packet that triggers RtlRandom
b.Receive response and save received timestamp
c.Simulate the M-M store behaviour
d.loop to a until the simulated M-M vector is complete

a.Send a packet that triggers RtlRandom
b.Receive response and save received timestamp
c.Simulate the M-M store behaviour
d.loop to a. until the simulated M-M vector is complete

Challenge prediction attack
[1/4]

a.Send a packet that triggers RtlRandom
b.Receive response and save received timestamp
c.Simulate the M-M store behaviour
d.loop to a until the simulated M-M vector is complete

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

Step 1 - Set RtlRandom internal state to a known state

Attacker Victim
Requests authentication

Returns a challenge + timestamp

0 0 0

0 0 0

0 0 0

Attacker simulated M-M vector Victim RtlRandom M-M vector

? ? ?

? ? ?

? ? ?

? v1 ?

? ? ?

v6 ? v8

0 v1 0

0 0 0

v6 0 v8

? v1 v2

v3 ? v5

v6 ? v8

0 v1 v2

v3 0 v5

v6 0 v8

a.Send a packet that triggers RtlRandom
b.Receive response and save received timestamp
c.Simulate the M-M store behaviour
d.loop to a until the simulated M-M vector is complete

a.Send a packet that triggers RtlRandom
b.Receive response and save received timestamp
c.Simulate the M-M store behaviour
d.loop to a until the simulated M-M vector is complete

a.Send a packet that triggers RtlRandom
b.Receive response and save received timestamp
c.Simulate the M-M store behaviour
d.loop to a until the simulated M-M vector is complete

a.Send a packet that triggers RtlRandom
b.Receive response and save received timestamp
c.Simulate the M-M store behaviour
d.loop to a. until the simulated M-M vector is complete

Challenge prediction attack
[1/4]

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

Step 1 - Set RtlRandom internal state to a known state

a.Send a packet that triggers RtlRandom
b.Receive response and save received timestamp
c.Simulate the M-M store behaviour
d.loop to a. until the simulated M-M vector is complete

Attacker Victim
Requests authentication

Returns a challenge + timestamp

Attacker simulated M-M vector Victim RtlRandom M-M vector

0 v1 v2

v3 0 v5

v6 0 v8

? v1 v2

v3 ? v5

v6 ? v8

Challenge prediction attack
[1/4]

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

Step 1 - Set RtlRandom internal state to a known state

v0 v1 v2

v3 v4 v5

v6 v7 v8

a.Send a packet that triggers RtlRandom
b.Receive response and save received timestamp
c.Simulate the M-M store behaviour
d.loop to a. until the simulated M-M vector is complete

Attacker Victim
Requests authentication

Returns a challenge + timestamp

Attacker simulated M-M vector Victim RtlRandom M-M vector

0 v1 v2

v3 0 v5

v6 0 v8

Challenge prediction attack
[1/4]

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

Step 1 - Set RtlRandom internal state to a known state

v0 v1 v2

v3 v4 v5

v6 v7 v8

v0 v1 v2

v3 v4 v5

v6 v7 v8

a.Send a packet that triggers RtlRandom
b.Receive response and save received timestamp
c.Simulate the M-M store behaviour
d.loop to a. until the simulated M-M vector is complete

Attacker Victim
Requests authentication

Returns a challenge + timestamp

Attacker simulated M-M vector Victim RtlRandom M-M vector

Step 2 - Calculate possible challenges

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

Challenge prediction attack
[2/4]

Attacker simulated M-M vector

v0 v1 v2

v3 v4 v5

v6 v7 v8
unique({ 2 X } ²)

Given an internal RtlRandom() state it is necessary to calculate every
possible combination that can be generated by it

Challenge prediction attack
[3/4]

Step 3 - Collect possible responses

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

Attacker Victimb. Connects to attacker’s custom SMB server

c Sends challenges pre-calculated in step 1

 d. Sends responses

a. Sends email

Force the victim to connect to a specially crafted SMB server to
collect all the generated responses encrypted/hashed with his
credentials

Step 4 - Connect and use a valid response

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

Challenge prediction attack
[4/4]

Attacker Victimb. Returns one of the predicted challenges in step 2

c. Responds with a valid response collected in step 3

 d. Authenticates Ok

a. Requests authentication

Performing only one authentication attempt, the attacker gains
access to the victim using a valid response for the issued challenge

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

Clearing up Misconceptions

‣ This is not related to SMBRelay
- This is a new vulnerability, different code, different issue,
different patch
- MS08-068 does not address this vulnerability nor prevents
attacks against the same machine

‣ Passive replay attacks are/were possible
- Outgoing NTLM auth connections don’t need to use
NTLMSSP (/extended security)
- Windows NT4 vs current systems
- Legacy Systems, Samba, Third-party SMB Implementations

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

Vulnerability Scope, Severity and Impact

‣ MS categorized the vuln as ‘Important’ and as an ‘Elevation
of privilege’

‣ We discussed this with MS and accept their opinion..

‣ But we respectfully disagree... :)
- ‘Critical’ vulnerability that allows remote code execution

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

Vulnerability Scope, Severity and Impact

‣ Affects all versions of Windows!
- from NT4 to Windows 7, Server 2008, etc.

‣ It’s a 14-year old vulnerability in the Windows
authentication mechanism!

- might be a 17-year old vuln if NT3.51 is also affected (not
confirmed, anyone has a copy we can borrow? :))

Think about it... even passive replay attacks have
been possible against Windows NTLM authentication
sessions!

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

Vulnerability Scope, Severity and Impact

‣ There’s no fix for Windows NT4 Servers (not supported
anymore by MS)

- Still around? (e.g.: big retailers)
- Passive replay attacks

‣ Appliances
- Old Windows versions and/or not patched.

‣Yes, these might also be vulnerable to other vulns.. but...
- Can deploy generic anti-exploitation protections and workarounds
- Passive replay attacks may look like normal traffic (IDS detection?)
- Active attacks may not be that easy to detect if challenges/responses are obtained from
one machine and used on another

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

Vulnerability Scope, Severity and Impact

‣ Elevation of privilege?
- Leads to remote code execution!

- Is a buffer overflow allowing remote code execution an
elevation of privilege vulnerability?..

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

Conclusions

‣ Vulnerability leads to remote code execution

‣ Three different exploitation methods
‣ Passive replay
‣ Active replay
‣ Prediction of challenges

‣ Bits from the seed are leaked by the Server
➡ the internal state of the PRNG can be calculated
➡ future challenges can be predicted

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

Conclusions

‣ PRNG != CSPRNG

‣Cryptographic code should be periodically reviewed

• Next time you audit code and see a call to

random()...

✓ Don’ t jump to the next line! :) analyze!

• Next time you audit code and see a ‘seed’

✓ Carefully analyze how it is created

✓ Look for possible side-channel attacks

Understanding the Windows SMB NTLM Authentication Weak Nonce Vulnerability

BlackHat USA 2010

Thank you!

‣ Emails:
- Hernan Ochoa: hernan@ampliasecurity.com
- Agustin Azubel: aazubel@ampliasecurity.com

mailto:hernan@ampliasecurity.com
mailto:hernan@ampliasecurity.com
mailto:aazubel@ampliasecurity.com
mailto:aazubel@ampliasecurity.com

